The Crystal Structure of Carbonatotetrakis(pyridine)cobalt(III) Perchlorate Monohydrate

By Karen Kaas

Department of General and Inorganic Chemistry, Royal Veterinary and Agricultural University, DK 1871 Copenhagen V, Denmark

AND ALEX MEHLSEN SØRENSEN

Chemical Laboratory C, Royal Danish School of Pharmacy, DK 2100 Copenhagen Ø, Denmark

(Received 2 October 1972; accepted 12 October 1972)

Carbonatotetrakis(pyridine)cobalt(III) perchlorate monohydrate ($CoC_{21}H_{20}N_4O_7Cl.H_2O$) crystallizes in space group $P2_1/c$ (No. 14) with a=9.457 (3), b=16.333 (6) and c=15.582 (11) Å, $\beta=97.93$ (4)°, Z=4. There is one formula unit in the asymmetric unit. The structure was solved by Patterson and Fourier techniques and refined by full-matrix least-squares methods to an R value of 0.049, using 3302 diffractometer-collected three-dimensional single-crystal X-ray intensity data. The cobalt atom is octahedrally surrounded by four nitrogen atoms of the pyridine molecules and two oxygen atoms of the bidentate carbonate group. The coordination octahedron is distorted due to strain in the four-membered chelate ring and steric hindrance between the pyridine molecules. The O-Co-O angle is 69.3°. There are no very short intermolecular distances, so the conformation is probably not very much affected by crystal packing.

Introduction

Nearly all known octahedral tetrakis(pyridine) complexes of transition metals have *trans* configuration. Only a few complexes with *cis* configuration have been reported, the dichlorotetrakis(pyridine)iridium(III) ion (Delépine & Lareze, 1963), the *cis*-dihalogenotetrakis(pyridine)ruthenium(II) complexes (Raichart & Taube, 1972), and the μ -oxalatobis[tetrakis(pyridine)ruthenium(II)] ion. The crystal structure of the latter as fluoroborate has been determined (Cheng, Loescher & Nyburg, 1971).

The scarcity of *cis* isomers is without doubt due to steric hindrance. Springborg & Schäffer (to be published) prepared the carbonatotetrakis(pyridine)cobalt-(III) ion that must be a *cis* configuration as the carbonato group is bidentate. The present X-ray crystallographic investigation was undertaken in order to determine the conformation of the complex ion.

Experimental

The crystal used for data collection was prepared by diffusion. A 1 ml test tube was placed inside a 5 ml tube. The inner tube was filled with saturated aqueous sodium perchlorate solution, the outer one with saturated carbonatotetrakis(pyridine)cobalt(III) perchlorate solution, until the surfaces were about 2 mm from the edge of the inner tube. Then a 5 mm layer of water was placed above to connect the two solutions. After 12 to 24 hr beautiful red monoclinic crystals were formed at the boundary between the carbonatotetrakis(pyridine)cobalt(III) perchlorate solution and the water. Most of the crystals were elongated in the *c*-axis direction. From Weissenberg and precession photographs the space group was determined as $P2_1/c$. The

unit-cell dimensions were obtained from least-squares refinement of a series of diffractometer-measured θ angles ($\lambda = 0.71069$ Å). a = 9.457 (3), b = 16.333 (6), c =15.582 (11) Å, $\beta = 97.93$ (4)°. V = 2384 Å³. The formula weight is 552.6 (CoC₂₁H₂₂N₄O₈Cl); density, measured at 20°C=1.547 g cm⁻³ (flotation), calculated = 1.540 gcm⁻³ for Z=4. The linear absorption coefficient, μ (Mo K α) is 9.23 cm⁻¹.

All X-ray data were obtained from a crystal 0.18 $\times 0.30 \times 0.30$ mm in a Nonius 3-circle automatic diffractometer using graphite monochromated Mo Ka radiation. The crystal was sealed in a glass capillary and oriented with its c axis along the φ axis of the goniometer. The ω -scanning mode was used. Scan speed 1.2° per min. Each reflexion was scanned over a range of 1.0° . The background was measured on each side of the reflexion for half the scanning time. The background count was set equal to twice the lowest count obtained, as the scanning range apparently had been too small. Intensities for 4188 independent reflexions in a quarter of a sphere in reciprocal space in the range $2.5^{\circ} < \theta < 25^{\circ}$ were measured. 3302 of these had intensities greater than 2.5 times their corresponding standard deviations (obtained from counting statistics) and were considered observed.

A standard reflexion was remeasured after each 25 reflexions. A minor decline in the intensity of this reflexion appeared during the last half part of the intensity measurements. It amounted to 5%, and was corrected for. No absorption corrections were applied.

Determination and refinement of the structure

The positions of the cobalt and the chlorine atoms were detected from a three-dimensional sharpened Patterson synthesis. An E map phased by these two atoms

Table 1. Observed and calculated structure factors (\times 10) for carbonatotetrakis(pyridine)cobalt(III) perchlorate monohydrate

Unobserved reflexions are designated with an asterisk. The columns are h, F_o and F_c .

	jane kasimuttin sikrkkalalati siendikanka sumutu kuntut suurantata suurantata suurantata. Kuu kuu kuu kuu kuu kuu kuu kuu kuu kuu	anderen anterente bereden distriction distriction anterenter anterenter distriction danterenter. Distriction d seconder streeterstand sound to a substant contraction contraction, streeters for the for the formation being an instand distriction is secondarial anterestic circles circles etter bencher billes and the formation to a second	unstrug stantastantungi atmassandaring ruoruntikig rataastatike ang araaf brand, stata ataa ataa ataa ataa ana ndarai kachikarini atainanantiki kachikarini kachikarini kachi kachi kachikari ataina atain ataina ataa ataa at ataa ataa ataa ataanaa ataanaa ataanaa ataanaa ataanaataa ataanaataa ataa ataanaa ataa ataanaa ataanaa ataanaa	turut isisteiset anttemätet Kohteabuik autoikek stattaisetta terraturutta kandustalla. Tarionalikuult ärdikaist autoinikses autoinikses taruusikses autoinikses autoinises tarionises fantoinises isiteisistes. Kannon Haunoisi autoinisessa autoinikses autoinikses autoinikses autoinises autoinises autoinisessa autoinisessa autoinises	autriccianti citan etano di riterativi antenno interno interna internati antende di cutanti alla di antendita autriccia interativi antendente di antendente di antende di antende di antende di antende di antende di antende autriccianti contende antende antende antende antende antende antende antende di antende di antende di antende autriccianti contende antende a autricciante di antende antende autricciante antende antende antende antende					
				€			11.1.1.1.1.1. (1.1.1.1.1.1.1.1.1.1.1.1.1			
• 1 -		- 6 17 19 1 - 2 - 11 7 9 - 1 - 11 7 9 - 2 - 11 7 1 - 2 - 11 7 - 2 - 12 7 - 2 - 2		-1.4 7 169 103 -1.4 9 103 -1.5 -9 102 -1.5 -10 10 -1.5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	0	- -

only $(R = \sum w(|F_o| - |F_c|) / \sum |F_o| = 0.45)$ showed the six ligating atoms (four nitrogens and two oxygens) in octahedral positions around the cobalt atom. On this basis a new E map (R = 0.40) revealed the rest of the non-hydrogen atoms except for the water oxygen atom.

All atoms were assumed to be non-charged and the scattering factors were taken from *International Tables* for X-ray Crystallography (1962).

During two cycles of least-squares refinement the R value decreased from 0.30 to 0.18 and the missing oxygen atom was found on a Fourier map. Two cycles of isotropic full-matrix refinement led to an R value of 0.11 and further isotropic refinement did not improve the result. A difference Fourier synthesis showed that the thermal vibrations of several atoms were distinctly anisotropic. After three cycles of anisotropic refinement the R value was 0.096, and a difference Fourier synthesis revealed all the hydrogen atoms except those of the water molecule. The hydrogen positions were in accordance with those calculated from the positions of the bonded atoms, assuming that the hydrogen atoms were placed at the extensions of the diagonals of the pyridine rings. The carbonhydrogen bond length was set to 1.08 Å.

In the following cycles of refinement, new positions for the hydrogen atoms were calculated after each cycle, but refinement of the hydrogen atom parameters was not attempted. The isotropic temperature factor for the hydrogen atoms was fixed at B=5.0 Å. The refinement ceased at R=0.049. At this stage the shifts were less than half the corresponding standard deviation (average shift/error=0.22). Because of capacity restrictions of the least-squares program, each of the pyridine rings was treated as an isolated block and so was the perchlorate ion and the cobalt atom plus the carbonato group. Finally the blocking was changed for a cycle of refinement to assure that the blocking had not biased the result.

During the later stages of the refinement an empirical weighting scheme was used, which gave highest weight to reflexions of moderate intensity and lower weight to reflexions with high intensity or low value of $\sin \theta \cdot 1/w = -0.5 + 2\sigma(F)^2 + 0.85/\sin \theta - 0.09F +$ $0.002F^2$. A final analysis of $\sum w(F_o - F_c)^2$ as a function of $|F_o|$ and $\sin \theta$ showed a smooth distribution indicating the validity of the weighting scheme. Observed and calculated structure factors are listed in Table 1. The refined coordinates and thermal parameters of the

Table 2. Final para	neters (and e.s.d'.	s) of non-	-hydrogen atoms
---------------------	---------------------	------------	-----------------

T.F. = exp	$\left[-2\pi^{2}(U_{11}a^{*2}h^{2}+2U_{12}a^{*}b^{*}hk+2U_{13}a^{*}c^{*}hl+U_{22}b^{*2}k^{2}+2U_{23}b^{*}c^{*}kl+U_{33}c^{*2}l^{2})\right]$	
•	Thermal parameters are in $Å^2 \times 10^2$.	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J ₂₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\hat{\mathbf{l}})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ζ3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	λ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	άĹ
N(4) $0.1649(3)$ $0.2145(2)$ $0.3002(2)$ $3.6(2)$ $3.2(2)$ $4.2(2)$ $-0.1(1)$ $0.1(1)$ 0.1	ά
	ά
C(1) 0.1959 (4) 0.3994 (7) 0.3487 (3) 4.0 (2) 3.4 (2) 6.2 (3) 0.1 (2) -0.8 (2) -1.0	(Ž)
C(11) 0.5158 (5) 0.2396 (3) 0.3030 (3) 5.2 (2) 4.4 (2) 5.4 (2) 0.8 (2) 1.7 (2) 0.8	(2)
C(12) 0.6122 (5) 0.2016 (3) 0.2770 (3) 6.3 (3) 6.1 (3) 6.8 (3) 1.0 (2) 2.7 (2) 0.3	(2)
C(13) 0.6870 (5) 0.1312 (3) 0.3174 (3) 4.8 (2) 6.1 (3) 7.2 (3) 1.6 (2) 1.2 (2) -0.9	(2)
C(14) 0.6212 (5) 0.1008 (3) 0.3835 (3) 4.8 (2) 4.9 (2) 6.3 (3) 1.6 (2) 0.5 (2) 0.1	(2)
C(15) 0.5035 (4) 0.1404 (2) 0.4068 (3) 4.4 (2) 4.1 (2) 5.0 (2) 0.7 (2) 0.2 (2) 0.0	(2)
C(2) 0.5318 (4) 0.3550 (3) 0.4872 (3) 3.6 (2) 5.0 (2) 5.4 (2) -0.5 (2) -0.4 (2) -0.2	(2)
C(22) 0.6055 (5) 0.4089 (3) 0.5466 (3) 4.5 (2) 5.7 (3) 5.9 (3) -1.4 (2) -1.0 (2) 0.0	(2)
C(23) 0.5392 (6) 0.4411 (3) 0.6119 (3) 7.2 (3) 5.8 (3) 5.0 (3) -1.8 (2) -0.7 (2) -0.3	(2)
C(24) 0.4012 (6) 0.4175 (3) 0.6170 (3) 7.3 (3) 6.3 (3) 4.9 (3) 1.9 (2) 1.0 (2) -1.6	(2)
C(25) 0.3322 (5) 0.3641 (3) 0.5568 (3) 5.4 (2) 5.4 (2) 4.9 (2) -1.0 (2) 0.7 (2) -1.1	(2)
C(31) 0.2923 (d) 0.1657 (2) 0.5525 (3) 5.0 (2) 4.2 (2) 3.8 (2) 0.3 (2) 0.6 (2) -0.2	(2)
C(32) 0.2402 (5) 0.1125 (3) 0.6102 (3) 6.8 (3) 4.5 (2) 4.4 (2) 0.7 (2) 1.0 (2) -0.2	(2)
C(33) 0.0976 (6) 0.0889 (3) 0.5944 (3) 7.6 (3) 4.8 (2) 5.3 (3) -0.8 (2) 2.0 (2) -0.1	(2)
C(34) $O(132(5))$ $O(1219(3))$ $O(5242(3))$ $5.3(2)$ $6.1(3)$ $6.4(3)$ $-1.4(2)$ $1.6(2)$ -0.6	(2)
C(35) 0.0715 (4) 0.1751 (3) 0.4698 (3) 3.7 (2) 5.4 (2) 5.1 (2) -0.7 (2) 0.8 (2) -0.5	(2)
C(41) $C(5)$ $C(4)$ $C(5)$ $C(4)$ $C(5)$ $C(4)$	(2)
C(42) = -0.0164(4) = 0.2150(3) = 0.1758(3) = 4.4(2) = 5.0(2) = 5.3(2) = -0.6(2) = -0.5(2) = 0.9	(2)
-0.0063(5) $-0.1312(3)$ $0.1683(3)$ $5.0(2)$ $5.1(2)$ $5.4(3)$ $-1.7(2)$ $-0.1(2)$ -0.3	(2)
C(44) 0.0885 (4) 0.0891 (2) 0.2284 (3) 4.6 (2) 3.6 (2) 6.4 (3) -0.5 (2) 0.1 (2) -0.4	(2)
C(45) 0.1720 (4) 0.1320 (2) 0.2925 (3) 3.7 (2) 3.7 (2) 5.0 (2) -0.2 (2) 0.1 (2) -0.1	(2)

non-hydrogen atoms are listed in Table 2, and the approximate coordinates of the hydrogen atoms in Table 3.

Table 3. Approximate hydrogen positions An isotropic temperature factor U=0.063 Å² was used.

	x	y	4
H(11)	0.4737	0.2948	0.2710
H(12)	0.6869	0.2258	0.2253
H(13)	0.7789	0.1010	0.2976
H(14)	0.6633	0.0457	0.4157
H(15)	0.4512	0.1161	0.4586
H(21)	0.5840	0.3301	0.4355
H(22)	0.7143	0.4265	0·5424
H(23)	0.5944	0.4828	0.6282
H(24)	0.3494	0.4425	0.6688
H(25)	0.2234	0.3463	0.5608
H(31)	0.4034	0.1833	0.5637
H(32)	0.3074	0.0875	0.6660
H(33)	0.0534	0.0473	0.6377
H(34)	-0.0979	0.1044	0.5131
H(35)	0.0045	0.2001	0.4141
H(41)	0.0629	0.3201	0.2481
H(42)	-0.0914	0.2479	0.1394
H(43)	-0.0726	0.0988	0.1173
H(44)	0.0956	0.0233	0.2228
H(45)	0.2466	0.0989	0.3389

The input tapes for the diffractometer were produced on a GIER computer by *INDIFF* (Sørensen, unpublished). The rest of the calculations were performed on the IBM 360/75 computer at NEUCC, Lundtofte, Denmark, using the N.R.C. 2A Picker data reduction program (Ahmed, revised by Alcock and Sørensen) and *The X-ray System* (Stewart, Kundell & Baldwin 1970). The drawings were prepared by *ORTEP* (Johnson, 1965).

Description and discussion of the structure

The structure of carbonatotetrakis(pyridine)cobalt-(III) perchlorate monohydrate is built up_from dis crete carbonatotetrakis(pyridine)cobalt(III) cations and perchlorate anions held together by electrostatic interaction. Fig. 1 shows the atomic labelling of the carbonatotetrakis(pyridine)cobalt(III) ion. Fig. 2 shows the content of a unit cell and the atomic labelling of the perchlorate ion and the water molecule.

Conformation of the complex ion

The interatomic distances and angles, uncorrected for thermal motion, are given in Table 4. As seen in Fig. 1 and 3, the angles in the octahedron are distorted. This is probably due to strain in the four-membered chelate ring and to space requirements of the pyridine molecules.

The four atoms of the carbonate group, the cobalt atom and the two nitrogen atoms N(1) and N(3) form one plane, the equatorial plane. The equation of this plane and the deviations of the atoms from it are given in Table 5. In the carbonatotetraminecobalt(III) ion (Barclay & Hoskins, 1962) and in the carbonatobis-(trimethylenediamine)cobalt(III) ion (Geue & Snow, 1971), an angle of 7° was found between the carbonate group and the O-O-Co-N-N plane. Otherwise the dimensions of the coordinated carbonate group as well as the bond distances and angles of the coordination octahedron in carbonatotetrakis(pyridine)cobalt(III) ion are close to previously reported values.

The two pyridine rings in *trans* positions (rings 2 and 4) are almost perpendicular (83°) to each other and form angles of 80 and 3°, respectively, with a plane containing N(2), N(4), Co, C(1) and O(3). This plane is perpendicular (89°) to the equatorial plane. Ring 1 is almost coplanar with the equatorial plane (the angle is 8°). Ring 3 is rotated in a direction opposite to ring 1 so that it forms an angle of 52° with the equatorial plane. The cobalt atom in no case lies on the extension of the N- γ C diagonal of the pyridine rings. The most striking deviation is that of ring 2, which forms an

Fig. 1. Stereoscopic drawing of the complex ion. The thermal ellipsoids enclose 50% probability. The hydrogen atoms have been omitted for clarity.

angle of 13° with the normal to the equatorial plane. The planes of two of the pyridine rings (Table 5) contain the cobalt atom, and thus only exhibit in-plane bending. The most pronounced is the 5° bending of ring 1 towards the carbonate group. This clearly increases the ring 1-ring 3 distance. The shortest distance between α -carbon atoms in adjacent rings is the C(35)-C(45) distance of 3.123 Å, which is significantly shorter than the 3.21 Å in trans-tetrakis-(3.4-dimethylpyridine)nickel(II) perchlorate (Madaule-Aubry, Busing & Brown, 1968) and shorter than the 3.17 Å in μ -oxalatobis[tetrakis(pyridine)ruthenium(II)] ion (Cheng, Loescher & Nyburg, 1971), the only cis-tetrakis(pyridine) complex structure reported so far.

The arrangement of the pyridine rings is completely asymmetric. The crystals thus contain complex ions of opposite chirality.

The pyridine ligand

The pyridine rings are planar and identical within experimental error. Table 5 gives the equations for the least-squares planes through the pyridine molecules and the deviations of the atoms from it. Table 4 gives the bond distances and angles. The means and the estimated standard deviations of the means have been calculated assuming that the pyridine molecules have symmetry 2. The four crystallographically independent pyridine molecules are oriented differently in the crystal and the determinations of their atomic positions are thus affected differently by such systematic errors as absorption. So, the good internal agreement and the agreement with values obtained by microwave spectroscopy (Bak, Hansen-Nygaard & Rastrup-Andersen 1958) and from other pyridine derivatives (Downie, Harrison & Raper, 1972) show that the pyridine mol-

Table 4	Interatomic	distances	(&)	and analos	(°`	`
Table 4.	Interatomic	aistances	(A)	ana angles	(J

C	o-N(1)	2.004 (4)	$O(1) \cdots C(25)$	2.835 (12)	C(1)-O(1)	1.330 (6)	
С	o-N(2)	1.974 (6)	$O(1) \cdots C(35)$	3.146 (6)	C(1) - O(2)	1.319 (5)	
C	0-N(3)	1.996 (5)	$O(1) \cdots C(41)$	2.940 (6)	C(1) - O(3)	1.210 (3)	
С	o-N(4)	1.985 (7)	$O(2) \cdots C(11)$	2.857 (5)	Cl O(5)	1.421 (4)	
С	o-O(1)	1.895 (3)	$O(2) \cdots C(21)$	3.063 (13)	ClO(6)	1.393 (8)	
C	O-O(2)	1.892 (3)	$O(2) \cdots C(41)$	3.004 (8)	Cl - O(7)	1.417 (7)	
		(-)	$C(11) \cdots C(21)$	3.420 (6)	C1O(8)	1.414 (5)	
0	(1)-Co-O(2)	69.28 (12)	$C(15) \cdots C(31)$	3.250(12)			
0	(1)-Co-N(2)	87.16 (12)	$C(15) \cdots C(45)$	3.387 (13)	C(1) - O(1)	··O(4) 115·4 (3)	
0	(1)-Co-N(3)	94.85 (12)	$C(25) \cdots C(31)$	3.263 (6)	O(1)-C(1)-	O(2) 108·7 (3)	
0	(1)-Co-N(4)	91.07 (12)	$C(35) \cdots C(45)$	3.123 (9)	O(1)-C(1)-	O(3) 125·5 (4)	
0	(2)-Co-N(1)	94.97 (12)			O(2)-C(1)-O(1)	O(3) 125·8 (4)	
0	(2)-Co-N(2)	86.84 (13)	Co-O(1)-C(1)	90.7 (2)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
0	(2)-Co-N(4)	90.96 (12)	Co-O(2)-C(1)	91·2 (2)	O(5)-Cl	$O(6) = 111 \cdot 1 (4)$	
N	(1) - Co - N(2)	93.19 (12)	Co-N(1)-C(11)	116.3 (3)	O(5)-Cl	O(7) = 107.3 (3)	
N	(1) - Co - N(3)	100.91 (12)	Co-N(1)-C(15)	125.5 (3)	O(5)-Cl	O(8) = 110.0(3)	
N	(1)-Co-N(4)	88.06 (13)	Co-N(2)-C(21)	121.5(3)	O(6)-Cl	O(7) 109·1 (3)	
N	(2)-Co-N(3)	91.38 (14)	$C_0-N(2)-C(25)$	119.6 (3)	O(6)–Cl–––	O(8) 111·2 (4)	
N	(3) - Co - N(4)	90.45 (13)	Co-N(3)-C(31)	123.9 (3)	O(7)-Cl	O(8) 108·0 (3)	
	., .,		$C_0 - N(3) - C(31)$	123.9 (3)			
			Co-N(3)-C(35)	118.3 (3)			
			Co-N(4)-C(41)	122.2(2)			
			$C_0-N(4)-C(45)$	120.4 (2)			
	Pyridine rir	igs					
	N-αC	•	αC-BC		$\beta C - \nu C$		
	N(1) = C(11)	1.248 (6)	C(11) $C(12)$	1.280 (7)	C(12) C(13)	1.371 (7)	
	N(1) - C(11) N(1) - C(15)	1.227 (5)	C(14) - C(12)	1.370(7)	C(12) - C(13) C(13) - C(14)	1.368 (8)	
	N(2) C(21)	1.347 (5)	C(14) - C(13)	1.302(7)	C(13) = C(14) C(22) = C(23)	1.372 (8)	
	N(2) = C(21)	1.342(3)	C(24) - C(22)	1.372(7)	C(22) - C(23)	1.373 (8)	
	N(2) = C(23)	$1^{-}3^{-}7^{-}(7)$	C(24) = C(23)	1.299(7)	C(23) = C(24)	1.201 (7)	
	N(3) - C(31) N(3) - C(35)	1.344 (0)	C(31) - C(32) C(34) - C(35)	1.281 (7)	C(32) - C(33) C(32) - C(34)	1.372 (8)	
	N(3) = C(33)	1.340 (5)	C(34) - C(33)	1.302 (7)	C(33) - C(34) C(42) - C(43)	1.377 (6)	
	N(4) = C(41)	1.254 (5)	C(41) - C(42) C(44) - C(45)	1.300(7)	C(42) - C(43) C(43) - C(44)	1.385(7)	
	N(4) = C(43)	1.334 (3)	C(44) = C(43)	1.384 (6)	C(43) - C(44)	1.376 (8)	
	Microwave	1.3402	Microwave	1.3945	Microwave	1.3944	
N-vertex		αC-vertex		BC-vertex		vC-vertex	
N(1)	119.2 (2)	C(11)	121.4 (4)	C(12)	110.0 (5)	C(13)	118.4 (5)
N (1)	110-2 (3)	C(11)	121.4(4) 122.4(4)	C(12)	119.9(3) 110.7(4)	C(13)	110.4 (3)
NICO	119.2 (2)	C(13)	122.4 (4) 121.7 (4)	C(14)	119.7(4)	C(22)	118.1 (4)
IN(2)	110.2 (3)	C(21)	121.7(4) 121.0(4)	C(22)	120.2 (5)	C(23)	110-1 (4)
N(2)	117.9 (4)	C(23)	121.9 (4)	C(24)	$120^{12}(3)$	C(33)	118.4 (4)
17(3)	11/0 (4)	C(31)	122.0 (4)	C(32)	110.0 (4)	C(33)	110.4 (4)
N(A)	117.2 (2)	C(33)	122.5 (4)	C(37)	110.0 (4)	C(43)	118.8 (4)
14(4)	11/3(3)	C(41)	122.9 (3)	C(42)	119.4 (4)	C(+J)	110 0 (4)
Mean	117.0 (1)	Mean	122.0 (5)	Mean	119.6 (5)	Mean	118.4 (3)
Microwave	116.83	Microwave	123.88	Microwave	118.53	Microwave	118.33
INITEL OWAVE	110 05	iviter o wave	120 00	Milei Owave	110 55		110 00

ecule is not distorted even in a complex with pronounced steric hindrance. This also agrees, within the respective experimental error, with the values obtained in other tetrakis(pyridine) complexes.

Perchlorate ion

The perchlorate ion is a nearly perfect tetrahedron with dimensions close to previously reported values (Vijayan & Viswamitra, 1966). The average Cl-O distance is 1.411 (13) Å and the average O-Cl-O angle 109.5 (1.6)°. The thermal vibrations, which are relatively high, seem to be determined by the packing of the ions.

Water molecule

The water molecule -O(4) – forms no close contacts to the rest of the structure, in accordance with the relatively poor definition of its position and the high values of its thermal parameters. The closest approach of the water molecule is to the ligating oxygen O(1) of the carbonate group. This distance (2.89 Å) might be interpreted as a hydrogen bond although the hydrogen atom has not been located. The angle $C(1)-O(1)\cdots O(4)$ is 115° and O(4) is situated only 0.27 Å from the equatorial plane. The distance of 3.106 Å to O(7) of the perchlorate ion does not differ significantly from the sum of the van der Waals radii.

Packing

The closest intermolecular approaches (Table 6) are all between pyridine rings and oxygen atoms (either the non-ligating oxygen atom of the carbonate group or the oxygen atoms of the perchlorate ion).

Each perchlorate ion is surrounded by five complex ions and a water molecule and each complex ion by five perchlorate ions and a water molecule. The conformation of the complex ion is only slightly affected by the neighbour ions, though as mentioned above ring 2 is bent 13° probably due to close contacts to ring 1 (3.50 Å).

Table 5. Least-squares planes

The equations of the planes can be expressed as Px + Qy + Rz = S in direct space.

Plane determined by:

P Q R S	Pyridine ring 1 4·887 8·916 9·067 7·407		ine ring 1 Pyridine ring 2 .887 -2.388 .916 12.595 .067 -8.477 .407 -0.925		Pyridine ring 3 - 2·911 12·684 9·146 6·297		Pyridine ring 4 - 7.531 - 1.769 10.897 1.658		Co, N(1), N(2) 4.530 7.230 10.668 7.489	
Di	stances	of the atom	s from least-sq	uares planes ir	A and the	corresponding	; standard de	viation.		
	N(1) C(11) C(12) C(13) C(14) C(15) Co*	$\begin{array}{c} 0.005 \\ -0.002 \\ 0.001 \\ -0.002 \\ 0.004 \\ -0.006 \\ -0.001 \end{array}$	N(2) C(21) C(22) C(23) C(24) C(25) Co*	$\begin{array}{c} 0.004 \\ - 0.002 \\ - 0.003 \\ 0.007 \\ - 0.005 \\ - 0.001 \\ 0.304 \end{array}$	N(3) C(31) C(32) C(33) C(34) C(35) Co*	$\begin{array}{c} -0.018 \\ 0.006 \\ 0.011 \\ -0.017 \\ 0.005 \\ 0.013 \\ -0.036 \end{array}$	N(4) C(41) C(42) C(43) C(44) C(45) Co*	0.008 0.007 0.001 0.008 0.007 0.001 0.069	C(1) O(1) O(2) O(3) Co N(1) N(3)	$\begin{array}{c} 0.005 \\ -0.043 \\ -0.006 \\ 0.026 \\ -0.005 \\ -0.001 \\ 0.024 \\ 0.270 \end{array}$
	e.s.d.	0.004	e.s.d.	0.004	e.s.d.	0 ·014	e.s.d.	0.007	e.s.d.	0.023

* Not included in the calculation of the plane.

Fig. 2. Stereoscopic illustration of the contents of the unit cell. The view is down a, with b vertical and c horizontal. Thermal ellipsoids are shown for the perchlorate ion and the water molecule and enclose 50% probability.

 Table 6. Interionic distances (Å) between non-hydrogen atoms

The first column contains atoms belonging to the crystal chemical unit (CCU), see Fig. 2.

. .

Key to	o symme	etry op	erations					
i:	1+x	y	Z		v:	x	$\frac{1}{2} + y$	$\frac{1}{2} - z$
ii :	x-1	y	Z		vi:	1+x	$\frac{1}{2} - v$	- z - ł
iii:	1-x	1 - y	1-z		vii:	x	$\frac{1}{2} - y$	$\frac{1}{2} + z$
iv:	1-x	$\frac{1}{2} + y$	$\frac{1}{2} - z$		viii:	x	$\frac{1}{2} - y$	$z^{-\frac{1}{2}}$
O–O a	nd O-O	C distar	nces $\leq 3 \cdot$	5 Å				
		O(1)∙	···O(4)	(ii)	2.894	1 (7)		
		O(2)	$\cdots C(32)$	(viii)	3.350) (7)		
		O(3)·	$\cdots C(22)$	(iii)	3.496	5 (11)		
		O(3)·	$\cdots C(23)$	(iii)	3.321	(9)		
		O(3)·	$\cdots C(43)$	(v)	3.037	7 (5)		
		O(3)·	•••C(44)) (v)	3.060) (7)		
		O(4)∙	····O(7)		3.106	5 (10)		
		O(4)∙	$\cdots C(21)$)	3.313	3 (12)		
		O(4)∙	$\cdots C(22)$)	3.361	l (14)		
		O(5)·	$\cdots C(12)$)	3.414	4 (7)		
		O(5)·	$\cdots C(15)$	(viii)	3.275	5 (11)		
		O(5)	$\cdots C(31)$	(viii)	3.357	7 (9)		
		O(6)·	$\cdots C(32)$) (viii)	3.458	3 (12)		
		O(7)∙	$\cdots C(33)$) (vi)	3.342	2 (12)		
		O(7)∙	$\cdots C(41)$) (i)	3.30	5 (6)		
		O(7)	$\cdots C(42)$) (i)	3.39	7 (6)		
		O (7)·	$\cdot \cdot \cdot C(44)$) (iv)	3.403	3 (6)		
		O(8)	$\cdots C(14)$	(viii)	3.412	2 (9)		
		O(8)	$\cdots C(15)$) (IV)	3.42	(6)		
		O(8)·	$\cdots C(45)$) (iv)	3-33	l (7)		
C–C d	istances	≤ 3.7	Å					
		C(1) ·	$\cdots C(23)$	(iii)	3.609	ə (7)		
		C(12)	$\cdots C(23)$	(viii)	3.495	5 (8)		
		C(12)	$\cdots C(24)$	(viii)	3.651	l (13)		
		C(13)	$\cdots C(23)$	(viii)	3.517	7 (11)		
		C(21)	$\cdots C(23)$) (iii)	3.693	3 (7)		
		C(22)	\cdots C(23)	(iii)	3.611	l (9)		
		C(24)	$\cdots C(44)$	(vii)	3.632	2 (12)		
		C(32)	$\cdots C(41)$	(vii)	3.533	3 (9)		
		C(33)	$\cdots C(41)$	(vii)	3.479	€ (6)		
		C(33)	$\cdots C(42)$	(vii)	3.663	3 (7)		
		C(34)	•••C(42)	(vii)	3.597	/ (7)		

Thanks are due to the Danish State Research Foundation for placing the diffractometer at the disposal of the Chemical Laboratory C, Royal Danish School of Pharmacy. One of the Authors (K. K.) wishes to thank the Royal Veterinary and Agricultural University for a research grant.

References

- BAK, B., HANSEN-NYGAARD, L. & RASTRUP-ANDERSEN, J. (1958). J. Mol. Spectrosc. 2, 361–368.
- BARCLAY, G. A. & HOSKINS, B. F. (1962). J. Chem. Soc. pp. 586–591.
- CHENG, P.-T., LOESCHER, B. R. & NYBURG, S. C. (1971). Inorg. Chem. 10, 1275–1281.

Fig. 3. Bond distances and angles of the coordination octahedron.

- DELÉPINE, M. & LAREZE, F. (1963). C. R. Acad. Sci. Paris, 256, (19) 3912–3916, 257, (25) 3772–3773.
- DOWNIE, T. C., HARRISON, W. & RAPER, E. S. (1972). Acta Cryst. B28, 283-290.
- GEUE, R. I. & SNOW, M. R. (1971). J. Chem. Soc. (A). pp. 2981–2987.
- International Tables for X-Ray Crystallography (1962). Vol. III, pp. 202, 205. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- MADAULE-AUBRY, F., BUSING, W. R. & BROWN, M. (1968). Acta Cryst. B24, 754–767.
- RAICHART, D. W. & TAUBE, H. (1972). Inorg. Chem. 11, 999-1002.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The X-ray System. Univ. of Maryland, College Park, Maryland.
- VIJAYAN, M. & VISWAMITRA, M. A. (1966). Acta Cryst. 21, 522–532.